M13. CONTRIBUTION OF THE 14-3-3 GENE FAMILY TO AUTISM SPECTRUM DISORDER

Bru Cormand1, Bàrbara Torrico1, Sadaf Ghorbani2, Noèlia Fernàndez-Castillo1, Laura Pineda1, Amaia Hervás3, Barbara Franke4, Jan Buitelaar5, Christine Freitag6, Andreas Reif7, Isabel Rueda8, Rune Kleppe2, Jan Haavik2, Claudio Toma9

1Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 2Department of Biomedicine, University of Bergen, Norway, 3Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain, 4Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands, 5Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands, 6Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe-University Frankfurt am Main, Frankfurt am Main, Germany, 7Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt - Goethe University, Frankfurt am Main, Germany, 8Developmental Disorders Unit (UETD), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain, 9Neuroscience Research Australia (NeuRA)

Background We recently identified a heterozygous 1-bp insertion in the YWHAZ gene (c.659_660insT, p.L220Ffs*18) in two brothers with Autism Spectrum Disorder (ASD) (Toma et al. Mol Psychiatry 2014;19:784). This gene encodes 14-3-3ζ, one of the seven isoforms of the 14-3-3 protein family. In this study we aimed to (1) functionally characterize the disruptive mutation identified in YWHAZ; and (2) evaluate the possible implication in ASD of all members of this gene family (SFN, YWHAQ, YWHAG, YWHAZ, YWHAB, YWHAH, YWHAE).

Methods Normal and truncated 14-3-3ζ were expressed as fusion proteins in E. coli, where their solubility was tested. Furthermore, Biacore experiments were performed to assess the affinity of the truncated 14-3-3ζ with the well-known interactor Ser19-phosphorylated tyrosine hydroxylase (TH-Ser19P). To test the possible involvement of common and rare variants of the 14-3-3 genes in ASD we performed, respectively, (a) a case-control association study in 727 ASD patients and 714 controls, by using tagSNPs covering the seven genes; and (b) resequencing of all these genes in 285 ASD patients.

Results Truncated 14-3-3ζ presented a decreased solubility and lost its affinity with TH-Ser19P. No common variants were found associated with ASD in our study. The mutation screening identified two potentially damaging variants in the SFN gene.

Discussion These results suggest a possible dominant negative effect of the truncated 14-3-3ζ. The genetic study of the 14-3-3 gene family did not identify other risk variants in the YWHAZ gene. Although potential mutations were identified in SFN, further experiments are needed to test its possible contribution to ASD.

Disclosure: Nothing to Disclose.