M67. THE UNIQUE EVOLUTIONARY SIGNATURE OF AUTISM GENES.
Idan Menashe¹, Erez Tsur¹, Michael Friger¹
¹Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Background Autism is a prevalent heritable neurodevelopmental disorder characterized by social and communication disabilities, which greatly reduce reproductive fitness. The maintenance of such a heritable and low-reproductive trait in the human population is an evolutionary enigma that has likely left traces in autism genes. High-throughput genomic data from large human samples are an excellent resource to explore such hypotheses.

Methods we studied the genomic characteristics of 651 autism genes and of 14,934 non-autism genes in a large whole-exome sequencing dataset, which included data on 503,481 single-nucleotide variants (SNVs) in 2,439 individuals of diverse ethnic backgrounds. We used population genetics methodologies to inquire regarding the types and extent of evolutionary constraints that act on autism genes.

Results We show that autism genes are approximately 65% longer and 20% less variable than non-autism genes. The mutational dearth in autism genes was particularly eminent among SNVs with potential damaging effects, which is a hallmark of negative selection. These differences were more prominent when considering only well-established autism genes. We further show that these genomic characteristics could efficiently differentiate between autism genes and other brain-expressed genes, or genes of other closely related diseases.

Conclusions Our findings suggest that autism genes have a unique genomic signature, which could be used to identify new candidate genes for the disorder.